PTEN and rapamycin inhibiting the growth of K562 cells through regulating mTOR signaling pathway
نویسندگان
چکیده
OBJECTIVE To investigate, in vitro, the regulatory effects of tumor-suppressing gene PTEN on mTOR (mammalian target of rapamycin) signaling pathway, the effects of transfected PTEN and rapamycin on the growth inhibition, and apoptosis induction for human leukemia cell line K562 cells. METHODS K562 cells were transfected with recombined adenovirus-PTEN vector containing green fluorescent protein (Ad-PTEN-GFP), followed by the treatment of the cells with or without rapamycin. The proliferation inhibition rate and apoptotic rate of these transfected and/or rapamycin treated K562 cells were measured by MTT assay and flow cytometry (FCM), the expression levels of PTEN-, mTOR-, cyclinD1- and P27kip1- mRNA were measured by real-time fluorescent relative-quantification reverse transcriptional PCR (FQ-PCR), the protein expression levels of PTEN, Akt, p-Akt were detected by western blotting. RESULTS The proliferation of K562 cells was inhibited by PTEN gene transfection with/without the treatment of rapamycin. The expression levels of PTEN- and P27kip1- mRNA were up-regulated, and the mTOR- and cyclinD1- mRNA were down-regulated in K562 cells after the cells transfected with wild type PTEN gene and treated with rapamycin. CONCLUSION PTEN and rapamycin inhibited mTOR expression by acting as an upstream regulator of mTOR. Low dose rapamycin in combination with over-expressed PTEN might have synergistic effects on inhibiting the proliferation and promoting apoptosis of K562 cells.
منابع مشابه
Quinazoline derivative compound (11d) as a novel angiogenesis inhibitor inhibiting VEGFR2 and blocking VEGFR2-mediated Akt/mTOR /p70s6k signaling pathway
Objective(s): We previously reported a series of quinazoline derivatives as vascular-targeting anticancer agents. In this study, we investigated the mechanism underlying the anti-angiogenic activity of the quinazoline derivative compound 11d. Materials and Methods: We examined the effects of quinazoline derivative 11d on vascular endothelial growth factor receptor-2 (VEGFR2) activation via VEG...
متن کاملEupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway
Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...
متن کاملRapamycin Inhibits Expansion of Cord Blood Derived NK and T Cell
Background: The mammalian target of rapamycin (mTOR) is important in hematopoiesis. Despite the central role of mTOR in regulating the differentiation of immune cells, the effect of mTOR function on cord blood mononuclear cells is yet to be defined. Objectives: To evaluate the effect of mTOR inhibition, using rapamycin on the proliferation and apoptosis of cord blood mononuclear cells, as well ...
متن کاملAn expanding role for mTOR in cancer.
Rapamycin, a valuable drug with diverse clinical applications, inhibits mTOR (mammalian target of rapamycin), which is a protein kinase that controls cell growth by regulating many cellular processes, including protein synthesis and autophagy. The sensitivity of select tumor cells to rapamycin has ignited considerable excitement over its potential as an anti-cancer therapeutic. Recent findings ...
متن کاملP162: Emerging Perspectives on Mtor-Associated Inflammation in Neurodegenerative Diseases
Inflammatory processes have been shown to be involved in development and progression of neurodegenerative diseases. Mammalian target of rapamycin (mTOR) involves in various cellular processes including autophagy, apoptosis and energy metabolism. Recently, studies have been shown an association between mTOR pathway and inflammation, supporting the role of the pathway in the pathogenesis of infla...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Experimental & Clinical Cancer Research : CR
دوره 27 شماره
صفحات -
تاریخ انتشار 2008